КАМАШЕВ АНДРЕЙ АНДРЕЕВИЧ

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ РОЛИ ТРИПЛЕТНОГО СПАРИВАНИЯ В ЭФФЕКТЕ СВЕРХПРОВОДЯЩЕГО СПИНОВОГО КЛАПАНА

01.04.11 – физика магнитных явлений

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена в лаборатории физики перспективных материалов Федерального государственного бюджетного учреждения науки Казанский физико-технический институт им. Е. К. Завойского Казанского научного центра Российской академии наук (КФТИ КазНЦ РАН)

Научный руководитель:	Гарифуллин Ильгиз Абдулсаматович доктор физико-математических наук, профессор, главный научный сотрудник КФТИ КазНЦ РАН
Официальные оппоненты:	 Рязанов Валерий Владимирович доктор физико-математических наук, профессор, заведующий лабораторией сверхпроводимости Федеральное государственное бюджетное учреждение науки «Институт физики твердого тела Российской академии наук» (Московская область, г. Черноголовка) Пугач Наталия Григорьевна кандидат физико-математических наук, старший научный сотрудник ФГБУН ВО «Московский государственный университет им. М. В. Ломоносова», НИИ ядерной физики им. Д. В. Скобельцына, отдел микроэлектроники
Ведущая организация:	(г. Москва) Институт физики микроструктур РАН - филиал Фе- дерального государственного бюджетного научного учреждения «Федеральный исследовательский центр Институт прикладной физики Российской академии наук» (ИПФ РАН) (г. Нижний Новгород)

Защита состоится **25 ноября 2016 года в 14³⁰ часов** на заседании диссертационного совета Д 002.191.01 при Федеральном государственном бюджетном учреждении науки Казанском физико-техническом институте им. Е. К. Завойского Казанского научного центра Российской академии наук по адресу: 420029, г. Казань, ул. Сибирский тракт, д. 10/7, КФТИ КазНЦ РАН.

С диссертацией можно ознакомиться в библиотеке и на сайте http://www.kfti.knc.ru/ about-institute/sovety/dissertation-council/news-and-announcements.php Федерального государственного бюджетного учреждения науки Казанского физико-технического института им. Е. К. Завойского Казанского научного центра Российской академии наук.

Отзывы на автореферат (два заверенных экземпляра) просим отправлять по адресу: 420029, г. Казань, ул. Сибирский тракт, д. 10/7.

Автореферат разослан «_____» _____ 2016 г.

Ученый секретарь диссертационного совета, кандидат физ.-мат. наук

Р. И. Хайбуллин

Общая характеристика работы

Актуальность работы.

Исследования взаимодействия двух антагонистических явлений — сверхпроводимости и ферромагнетизма — проводятся с середины 60-х годов XX века. Антагонизм этих явлений заключается в том, что ферромагнетизм предполагает параллельную (Р) ориентацию спинов, а сверхпроводимость - антипараллельную (АР), так как спины электронов, входящих в куперовскую пару, противоположно направлены. Изначально взаимодействие этих двух явлений изучалось в интерметаллических соединениях и сплавах. В связи с произошедшим в последнее время технологическим прогрессом в приготовлении высококачественных тонкопленочных слоистых металлических пленок (мультислоев) и сверхрешеток (монокристаллических слоистых структур) вектор исследований был смещен в сторону искусственно созданных многослойных гетероструктур. Интерес к структурам, состоящим из ферромагнитных и сверхпроводящих слоев, связан с тем, что в них сверхпроводимость (C) и ферромагнетизм (Φ) пространственно разнесены. В тонкопленочных гетероструктурах С/Ф были обнаружены различные физические эффекты, связанные с влиянием ферромагнетизма на сверхпроводимость, такие как немонотонная зависимость температуры перехода в сверхпроводящее состояние от толщины Ф-слоя, Джозефсоновская π -связь для систем C/ Φ /C, эффект спинового экранирования и др.

Теоретические модели для тонкопленочных гетероструктур $\Phi 1/\Phi 2/C$ [1] и $\Phi 1/C/\Phi 2$ [2, 3] указывают на то, что степень разрушения куперовских пар в C/ Φ системах зависит от взаимной ориентации намагниченностей ферромагнитных слоев. Таким образом, в таких структурах можно осуществить контролируемое включение и выключение сверхпроводящего тока. При этом, согласно ранним теоретическим моделям [1, 2, 3], значение температуры перехода в сверхпроводящее состояние при антипараллельной (AP) ориентации намагниченностей T_c^{AP} оказывается выше, чем при параллельной (P) ориентации T_c^P . Это явление получило название эффекта сверхпроводящего спинового клапана. Был опубликован целый ряд экспериментальных работ, см., например, [4, 5, 6, 7, 8, 9], в которых наблюдался эффект спинового клапана. Однако, величина эффекта $\Delta T_c = T_c^{AP} - T_c^P$ во всех экспериментальных работах была меньше ширины перехода в сверхпроводящее состояние δT_c . Вследствие этого осуществить полное переключение между нормальным и сверхпроводящим состояниями в таких структурах оказывалось невозможным. В работах [10] и [11] были получены данные, которые позволяют утверждать, что конструкция $\Phi 1/\Phi 2/C$ является более перспективной, чем $\Phi 1/C/\Phi 2$.

Впервые полный эффект переключения спинового клапана из сверхпроводящего со-

стояния в нормальное и наоборот был экспериментально реализован в системе $\text{CoO}_x/\text{Fe1}/\text{Cu}/\text{Fe2}/\text{In}$ в 2010 году [12]. В 2011 году была опубликована статья [13], посвященная детальному исследованию зависимости величины эффекта сверхпроводящего спинового клапана ΔT_c от толщины d_{Fe2} для систем сверхпроводящего спинового клапана $\text{CoO}_x/\text{Fe1}/\text{Cu}/\text{Fe2}(d_{Fe2})/\text{In}$. В этой работе было экспериментально установлено, что величина эффекта ΔT_c осциллирует с изменением знака при изменении толщины слоя Fe2. Физический смысл этого явления связан с квантовой интерференцией парных волновых функций, отраженных от границы раздела C/Ф и внешней границы Ф-слоя [14]. Таким образом, не всегда AP конфигурация намагниченностей Ф-слоев является предпочтительной для сверхпроводимости, как это предполагалось в работе Oh и др. [1].

В работе [15] было показано, что аккуратный анализ процессов, происходящих при проникновении куперовской пары из С-слоя в Ф-слой, предсказывает генерацию триплетной компоненты в сверхпроводящем конденсате в Ф-слое. В однородном ферромагнетике эта компонента имеет нулевую проекцию спина на ось квантования ($S_z = 0$). Экспериментально обнаружить триплетную компоненту с нулевым спином при исследовании транспортных свойств системы не удается вследствие того, что она проникает в Ф-слой на такую же малую глубину, как и синглетная компонента сверхпроводящего конденсата. Однако при наличии магнитных неоднородностей полный спин куперовской пары $S_z = \pm 1$ [15], и ее можно зафиксировать по аномально глубокому проникновению сверхпроводящего конденсата в ферромагнетик. Эта компонента также появляется в системах $\Phi 1/\Phi 2/C$ с неколлинеарным направлением намагниченностей Ф-слоев [16] или с пространственной зависимостью обменного поля или величины момента в ферромагнетике [17, 18, 19].

В 2010 году теория сверхпроводящего спинового клапана для конструкций $\Phi 1/\Phi 2/C$ была развита для случая неколлинеарной взаимной ориентации между намагниченностями ферромагнитных слоев [14]. Расчеты Фоминова и др. [14] показывают, что характерный минимум T_c вблизи ортогональной конфигурации намагниченностей ферромагнитных слоев в зависимости T_c от α , где α — угол между намагниченностями ферромагнитных слоев, является прямым свидетельством генерации триплетной компоненты сверхпроводящего конденсата. Подавление T_c в системе С/Ф происходит благодаря утечке куперовских пар в Φ -слой. В этом смысле генерация дальнодействующей триплетной компоненты (ДТК) при неколлинеарных ориентациях намагниченностях открывает дополнительный канал для такой утечки. Вследствие этого подавление T_c усиливается. Следует отметить, что триплетная компонента сверхпроводящего конденсата генерируется из синглетной (превращение вследствие воздействия обменного поля), уменьшая амплитуду синглетной компоненты в слое сверхпроводника, истощая таким образом сверхпроводящий конденсат. Этот эффект может оказаться значительным, поскольку величины синглетной компоненты, индуцированной эффектом близости, и дальнодействующей триплетной компоненты могут оказаться одного порядка вблизи интерфейса Ф2/С.

Поскольку при поиске проявления ДТК необходимо было исследовать угловые зависимости T_c , индий, являвшийся сверхпроводником в ранее изучаемой системе, был заменен на свинец, обладающим более высокими значениями критического поля. В работах [20, 21] изучалась система CoO_x/Fe1/Cu/Fe2/Pb. Исследовались угловые зависимости T_c от α . Основной результат работ заключался в том, что для всех образцов, за исключением опорного, удалось обнаружить весьма специфические зависимости T_c от угла между намагниченностями M_{Fe1} и M_{Fe2} с минимумом вблизи ортогональной конфигурации намагниченностей Φ -слоев. Согласно теории Фоминова и др. [14], такое поведение T_c однозначно свидетельствует о проявлении ДТК в сверхпроводящем конденсате в этих системах. Вместе с тем, очень скоро выяснилось, что система CoO_x/Fe1/Cu/Fe2/Pb нестабильна. Ее сверхпроводящие свойства деградировали в течение двух-трех недель. Данное обстоятельство не позволяло детально исследовать наблюдаемые эффекты, то есть остро встала проблема стабилизации свойств образцов.

Теория Фоминова и др. [14] в работе [20] была дополнена на случай конечной толщины обоих Φ -слоев. Согласно теории, максимум ΔT_c в зависимости от толщин Fe1 и Fe2 должен достигаться при толщинах слоев Fe1 и Fe2, меньших 0.5 нм. В эксперименте не удается напылить образцы с толщиной слоя Fe меньше, чем 0.5 нм. Это связано с тем, что, вследствие начального островкого роста, слой железа толщиной меньше 0.5 нм оказывается несплошным и его воздействие на сверхпроводимость становится неоднозначным. Согласно теории, универсальной координатой толщин в зависимости $\Delta T_c(d_F)$ является отношение d_F/ξ_h , где ξ_h — глубина проникновения куперовской пары в Φ -слой. Это говорит о том, что для того, чтобы выйти в область толщин Ф-слоя, при которых можно достичь максимальных значений эффекта спинового клапана, необходимо увеличивать $\xi_h = \sqrt{\hbar D_F/h}$, где D_F — коэффициент диффузии электронов в Ф-слое, h — величина обменного поля в ферромагнетике. Следовательно, для того, чтобы наблюдать максимум ΔT_c в последующем, необходимо будет выбирать ферромагнетик, в котором обменное поле hбудет меньше, чем в железе. Это означает, что необходимо использовать магниторазбавленный материал. В качестве первого шага в этом направлении мы использовали пермаллой $(Py = Ni_{0.81}Fe_{0.19})$, хотя, априори, не очевидно, что в пермаллое величина h меньше, чем в железе.

В теоретической работе Фоминова и др. [14] эффективное граничное условие для

реальной компоненты аномальной Гриновской функции выглядит следующим образом:

$$\xi_S \frac{df_0}{dx} = W f_0,\tag{1}$$

где ξ_s — длина когерентности куперовской пары в С-слое. Из Выражения (1) видно, что параметр W, являющийся характеристикой магнитной части структуры, показывает, насколько подавлено T_c в системе. Другими словами, чем больше W, тем ниже T_c , чем меньше W, тем выше T_c . Вследствие этого получается, что для качественного описания экспериментально полученного T_c можно использовать параметр W, который легко теоретически вычислить. Во всех предыдущих работах нашей группы экспериментальные данные по T_c сравнивались с параметром теории W. В данной диссертационной работе устранен этот недостаток анализа экспериментальных данных по T_c . Здесь проведено прямое сравнение экспериментальных данных с теоретическим расчетом T_c в рамках теории Фоминова и др. для структур $\Phi 1/\Phi 2/C$.

На основании вышеизложенного можно сформулировать **основные цели** данной диссертационной работы:

- Добиться стабилизации сверхпроводящих свойств образцов сверхпроводящего спинового клапана структуры CoO_x/Fe1/Cu/Fe2/Pb.
- Установить роль триплетного спаривания в эффекте сверхпроводящего спинового клапана для структур CoO_x/Fe1/Cu/Fe2/Cu/Pb со стабильной границей Fe2/Pb и CoO_x/Py1/Cu/Py2/Cu/Pb, где в качестве ферромагнитного материала используется пермаллой (Py = Ni_{0.81}Fe_{0.19}).

Для достижения поставленной цели в диссертационной работе надо было решить следующие задачи:

- Приготовить образцы сверхпроводящего спинового клапана CoO_x/Fe1/Cu/Fe2/Pb с дополнительным слоем меди в границе раздела Fe2/Pb.
- Исследовать влияние дополнительного слоя меди в границе раздела Fe2/Pb на магнитные и сверхпроводящие свойства образцов CoO_x/Fe1/Cu/Fe2/Cu/Pb.
- Исследовать зависимость T_c от угла между намагниченностями ферромагнитных слоев в серии образцов сверхпроводящего спинового клапана CoO_x/Fe1/Cu/Fe2/ Cu/Pb с варьируемой толщиной слоев Fe1 и Fe2.
- Разработать технологию приготовления тонкопленочных гетероструктур CoO_x/Py1/ Cu/Py2/Cu/Pb с воспроизводимыми параметрами.

- Исследовать особенности эффекта сверхпроводящего спинового клапана и триплетной сверхпроводимости при различных толщинах промежуточного слоя ферромагнетика Ру2 в структурах CoO_x/Py1/Cu/Py2/Cu/Pb.
- Произвести прямое сравнение экспериментальных данных с теоретическим расчетом T_c в рамках теории Фоминова и др. для структур Ф1/Ф2/С.

Научная новизна.

- Установлено, что промежуточный слой меди в границе раздела Fe2/Pb в структуре CoO_x/Fe1/Cu/Fe2/Cu/Pb позволяет стабилизировать сверхпроводящие свойства образцов и увеличить прозрачность границы Fe2/Pb.
- Показано, что замена ферромагнитного материала в системах $CoO_x/Py1/Cu/Py2/Cu/Pbc$ железа (Fe) на пермаллой (Py = Ni_{0.81}Fe_{0.19}) позволяет увеличить величину эффекта сверхпроводящего спинового клапана в 3 раза.
- Впервые показана роль морфологии сверхпроводящего слоя на величину эффекта сверхпроводящего спинового клапана в структурах Φ1/Φ2/С. В работе было продемонстрировано, что если С-слой имеет шероховатую структуру, то величина эффекта сверхпроводящего спинового клапана ΔT_c в образцах CoO_x/Py1/Cu/Py2/Cu/Pb составляет менее 10 мК. Противоположный результат был получен для образцов CoO_x/Py1/Cu/Py2/Cu/Pb с гладким С-слоем, величина эффекта для таких структур составляет порядка 100 мК и больше.
- Впервые наблюдался эффект «изолированного» триплетного вклада в эффект сверхпроводящего спинового клапана при определенных параметрах структуры в образцах CoO_x/Py1/Cu/Py2/Cu/Pb.
- Впервые было проведено прямое сравнение теоретически рассчитанного и экспериментального полученного T_c для структур Ф1/Ф2/С.

Научная и практическая ценность работы. Результаты проведенных исследований являются новым шагом в понимании физики взаимодействия между сверхпроводимостью и ферромагнетизмом и позволяют, однозначно, выделить и контролировать триплетный вклад сверхпроводящего конденсата в эффект сверхпроводящего спинового клапана. Полученные результаты позволят в дальнейшем сконструировать сверхпроводящий спиновый клапан с оптимальными параметрами.

Положения, выносимые на защиту:

- Введение дополнительного слоя меди в границу раздела Fe2/Pb приводит к стабилизации сверхпроводящих свойств образцов CoO_x/Fe1/Cu/Fe2/Cu/Pb.
- Замена ферромагнитного материала с железа (Fe) на пермаллой (Py = Ni_{0.81}Fe_{0.19}) в структурах $\text{CoO}_x/\Phi 1/\text{Cu}/\Phi 2/\text{Cu}/\text{Pb}$ ведет к увеличению эффекта сверхпроводящего спинового клапана ΔT_c в несколько раз.
- Морфология сверхпроводящего слоя определяет величину эффекта сверхпроводящего спинового клапана ΔT_c в структурах Φ1/Φ2/C.
- Триплетный вклад в эффект спинового клапана зависит от параметров структуры CoO_x/Py1/Cu/Py2/Cu/Pb.
- Экспериментальные данные по T_c подтверждают теоретические расчеты, сделанные в рамках теории Фоминова и др. для структур Ф1/Ф2/С.

Достоверность результатов работы определяется комплексным характером выполненных экспериментальных исследований, тщательным выбором методики приготовления образцов и всех деталей эксперимента, многократной повторяемостью экспериментальных результатов, а также их согласование с теоретическими расчетами.

Личный вклад соискателя. Оптимизация режимов напыления образцов сверхпроводящего спинового клапана структуры $\Phi 1/\Phi 2/C$; первичная аттестация образцов; исследование магнитных свойств образцов при помощи SQUID-магнитометрии; исследование транспортных свойств образцов путем измерения температуры сверхпроводящего перехода по изменению электросопротивления; обработка и интерпретация полученных экспериментальных данных; участие в подготовке и оформлении статей в печать.

Апробация работы. Основные результаты диссертации докладывались на следующих конференциях: XVIII Международный симпозиум "Нанофизика и наноэлектроника" (Нижний Новгород, 2014), XVII International Youth Sciencific School "Actual Problems of Magnetic Resonance and Itis Application" (Казань, 2014), The International Conference "Spin Physics, Spin Chemistry and Spin Technology" (Санкт-Петербург, 2015), "XXXVII Совещание по физике низких температур" (Казань, 2015)¹, 17th International Conference on Nanotechnology, Optoelectronics and Photonics (Стокгольм, 2015), The 11th International Conference on Materials and Mechanisms of Superconductivity (Женева, 2015), XX Международный симпозиум "Нанофизика и наноэлектроника" (Нижний Новгород, 2016), Superconductors — based sensors and quantum technologies Workshop 2016 (Москва, 2016).

¹ Курсивом выделены конференции, на которых автор лично выступал с устным докладом.

Публикации. Основные результаты диссертационной работы изложены в восьми научных статьях [A1 — A8], опубликованных в рецензируемых журналах, рекомендованных ВАК, и в материалах и тезисах вышеперечисленных конференций.

Объем и структура диссертации. Диссертация состоит из введения, четырех глав, заключения, списка цитируемой литературы, состоящего из 112 наименований, списка публикаций автора по теме диссертации. Работа изложена на 142 страницах текста, содержит 37 рисунков и 4 таблицы.

Содержание работы

Во Введении дан краткий обзор современного состояния проблемы, обозначена актуальность работы, сформулированы цели и задачи исследований, изложена научная и практическая значимость, а также обоснован выбор объектов исследований.

В Главе 1 описаны методы молекулярно-лучевой эпитаксии и радиочастотного распыления, которые использовались для приготовления образцов. Изложены режимы, при которых были приготовлены различные серии исследованных образцов. На Рис. 1 схематически представлена конструкция полученных образцов с защитным слоем — нитридом кремния. В качестве подложек образцов были выбраны двухдюймовые высококачественные монокристаллы MgO(100). В качестве сверхпроводящего и ферромагнитных слоев выступает Pb и Fe или Py, соответственно. Для фиксации намагниченности Ф1-слоя используется оксид кобальта CoO_x . Оксид кобальта имеет температуру Нееля $T_N \sim 250$ K, ниже которой это вещество приобретает антиферромагнитные (АФ) свойства. В связи с этим, если проводить охлаждение образцов сверхпроводящего спинового клапана в достаточно большом магнитном поле, приложенном в плоскости образца вдоль определенного направления, то вдоль этого направления намагниченность ферромагнитного слоя, который имеет контакт с оксидом кобальта, будет захвачена за счет полей анизотропии АФ-слоя. Это позволит разнести коэрцитивные силы ферромагнитных слоев и изменять взаимную ориентацию намагниченностей слоев, используя небольшое внешнее магнитное поле. Для стабилизации границы раздела Ф2/С введен дополнительный слой меди между Ф2 и С. Использование свинца в качестве сверхпроводника требовало покрытия всех образцов защитным слоем, так как образцы проявляли нестабильность сверхпроводящих параметров в атмосфере. Это связано с тем, что свинец окисляется в атмосфере, а это, в свою очередь, приводит к деградации образца. Исходя из этого, все образцы были покрыты защитным слоем диэлектрика. В качестве диэлектрика был выбран нитрид кремния (Si₃N₄). Напыление защитного слоя производилось методом радиочастотного распыления.

Рис. 1. Дизайн приготовленных образцов.

В рамках данной главы представлен метод характеризации магнитных свойств образцов при помощи VSM SQUID-магнитометра фирмы Quantum design. Приведены экспериментальные результаты по изучения петель магнитного гистерезиса. В конце данной главы приведено описание оборудования, на котором производилась основная часть транспортных измерений (криостат дьюар в дьюаре), описан метод измерения температуры сверхпроводящего перехода и метод измерения электросопротивления.

Глава 2 посвящена стабилизации свойств границы раздела Fe2/Pb в образцах $CoO_x/$ Fe1/Cu/Fe2/Pb путем введения дополнительного слоя меди. Первые исследования эффекта близости в образцах Fe/Pb показали, что стабильность границы раздела между Fe и Pb ограничена по времени. На Pис. 2 показана деградация сверхпроводящих свойств систем Fe/Pb. Согласно Pис. 2, в течение первых нескольких недель в структурах без дополнительного слоя меди ширина сверхпроводящего перехода возрастает до 1.5 К. Температура перехода в сверхпроводящее состояние сдвигается в сторону бо́льших значений и приближается к значению 7.2 К, что соответствует T_c объемного сверхпроводящего свинца. Непродолжительный отжиг свежеприготовленных образцов при температуре ~ 100°C приводил к их мгновенной деградации. Такое поведение сверхпроводящих свойств образцов может говорить об ослаблении подавления T_c через интерфейс Fe/Pb. Сначала мы считали, что причиной этого является взаимная диффузия атомов Fe и Pb через интерфейс Fe/Pb. И, действительно, введение дополнительного тонкого слоя меди толщиной $d_{Cu} = 1.2$ нм стабилизирует интерфейс Fe/Pb и останавливает уширение сверхпроводящих переходов и сдвиг T_c .

На самом деле наиболее вероятной причиной быстрой деградации сверхпроводящих

Рис. 2. Временная эволюция сверхпроводящих свойств для образцов без дополнительного слоя меди Fe(5 нм)/Pb(32 нм) и с дополнительным слоем меди Fe(5 нм)/Cu(1.2 нм)/ Pb(60 нм).

свойств системы CoO_x/Fe1/Cu/Fe2/Pb является следующее. Диаграмма состояний системы Fe/Pb показывает, что эти два материала не смешиваются даже в жидком состоянии. Таким образом, взаимная диффузия этих материалов через границу раздела маловероятна. Отсутствие смешивания железа и свинца даже в жидком состоянии означает, что эти два материала не смачивают друг друга. На слой железа мы наносим слой свинца. Сначала свинец растет в виде островков, затем островки перекрываются. Ширина сверхпроводящих переходов изначально большая вследствие шероховатости слоя Pb и переменной толщины этого слоя на масштабах, бо́льших длины когерентности сверхпроводника. При комнатной температуре, которая составляет половину величины температуры плавления свинца, коэффициент диффузии атомов свинца оказывается значительным. Это приводит к тому, что атомы свинца коагулируют в островки, что ведет к раздвоению сверхпроводящих переходов на Рис. 2. Введение же дополнительного тонкого слоя меди толщиной *d*_{Cu} = 1.2 нм в границу раздела Fe/Pb останавливает уширение сверхпроводящих переходов и сдвиг T_c (см. Рис. 2). Это объясняется тем, что медь смачивает и железо и свинец. Таким образом, слой свинца напыляется сплошным на поверхность слоя меди. Вследствие этого наблюдается стабилизация сверхпроводящих свойств системы CoO_x/Fe1/Cu/Fe2/Pb после введения дополнительного слоя меди в границу раздела Fe2/Pb.

На модифицированных образцах спинового клапана $\text{CoO}_x/\text{Fe1/Cu/Fe2/Cu/Pb}$ со стабильными сверхпроводящими свойствами нам удалось изучить зависимости $\Delta T_c(d_{Fe2})$ и $\Delta T_c(d_{Fe1})$. Ранее подробно изучить такие зависимости не удавалось, так как происходила быстрая деградация сверхпроводящих свойств образцов.

Для исследования зависимости величины эффекта сверхпроводящего спинового кла-

пана от толщины слоя Fe2 $\Delta T_c(d_{Fe2})$ были приготовлены 2 серии образцов: первая серия образцов с дополнительным слоем меди в границе раздела Fe2/Pb, вторая серия — без. Для обеих серий образцов толщина слоя Fe2 d_{Fe2} варьировалась, толщины других слоев были фиксированы. Толщина слоя Fe1 составляла $d_{Fe1} = 2.5$ нм, что намного превышает глубину проникновения куперовских пар в слой железа $\xi_h = 0.8$ нм. Нами была обнаружена осцилляционная знакопеременная зависимость величины эффекта ΔT_c от d_{Fe2} . При толщине слоя Fe2 $d_{Fe2} = 0.5$ нм величина ΔT_c достигает максимального значения +40 мК. Положительное значение ΔT_c означает прямой эффект сверхпроводящего спинового клапана, то есть $T_c^{AP} > T_c^P$. При увеличени
и d_{Fe2} до 0.8 нм наблюдается снижение величин
ы ΔT_c до значения 0 мК. Следует отметить, что при дальнейшем увеличении толщины слоя Fe2 d_{Fe2} выше 1 нм величина ΔT_c падает до отрицательного минимума –15 мК при $d_{Fe2} \sim 1.3$ нм. Отрицательное значение ΔT_c говорит об обратном эффекте сверхпроводящего спинового клапана, то есть $T_c^{AP} < T_c^P$. Далее с увеличением d_{Fe2} величина ΔT_c плавно приближается к нулю. Важно также отметить, что осциляционное поведение зависимости $\Delta T_c(d_{Fe2})$ характерно для обеих серий образцов, содержащих Fe/Pb и Fe/Cu/Pb интерфейсы. Аналогичный результат уже наблюдался в нашей группе в образцах $CoO_x/Fe1/Cu/Fe2/In$ [13, 20].

Для того, чтобы исследовать зависимость величины эффекта сверхпроводящего спинового клапана от толщины слоя Fe1 $\Delta T_c(d_{Fe1})$ были приготовлены 2 серии образцов CoO_x/Fe1(d_{Fe1})/Cu(4 нм)/Fe2(d_{Fe2})/Cu(1.2 нм)/Pb(60 нм) с фиксированными толщинами слоя Fe2 0.5 нм и 0.9 нм, соответственно. Максимальное значение ΔT_c достигалось при близких толщинах d_{Fe1} и d_{Fe2} . Это связано с более полной компенсацией среднего обменного поля в пространстве между слоями Fe1 и Fe2. С увеличением d_{Fe2} с 0.5 нм до 0.9 нм величина ΔT_c приближается к 0 мК, согласно зависимости $\Delta T_c(d_{Fe2})$. Другой интересной особенностью зависимости $\Delta T_c(d_{Fe1})$ является наличие отрицательного минимума, предсказанного теорией, при очень малых толщинах слоя Fe1 d_{Fe1} . Такого рода осцилляции зависимости $\Delta T_c(d_{Fe1})$ носят тот же характер, что и осцилляции зависимости $\Delta T_c(d_{Fe2})$. Эти осцилляции объясняются квантовой интерференцией парной волновой функции куперовских пар на границе раздела С- и Ф- слоев (см. [13]).

В конце главы представлен теоретический анализ полученных экспериментальных результатов. Мы использовали теоретическую модель Фоминова и др. [14] для расчета наших экспериментальных результатов. Из транспортных измерений были определены все микроскопические параметры исследуемых систем. Теоретический анализ показал хорошее качественное согласие теории и эксперимента. Здесь было проведено сравнение экспериментально полученного T_c и теоретически рассчитанного параметра W (см. Выражение (1)). Глава 3 посвящена наблюдению дальнодействующей триплетной компоненты (ДТК) сверхпроводящего конденсата в структурах сверхпроводящего спинового клапана $CoO_x/Fe1/Cu/Fe2/Cu/Pb$. Предыдущие исследования нашей группы [21] показали, что структуры $CoO_x/Fe1/Cu/Fe2/Pb$ являются перспективными для исследования эффекта триплетной сверхпроводимости. Однако стабильность сверхпроводящих свойств таких систем была ограничена во времени. Нам удалось стабилизировать сверхпроводящие свойства образцов $CoO_x/Fe1/Cu/Fe2/Pb$ путем введения дополнительного слоя меди в границу раздела Fe2/Pb. Поэтому после изменения структуры сверхпроводящего спинового клапана необходимо было исследовать влияние дополнительного слоя меди на величину эффекта триплетной сверхпроводимости в модифицированных образцах спинового клапана $CoO_x/Fe1/Cu/Fe2/Cu/Pb$.

Во время измерений образцы вращались внутри установки. Вращение образцов в магнитном поле было необходимо для того, чтобы плавно менять угол между намагниченностями M_{Fe1} и M_{Fe2} ферромагнитных слоев Fe1 и Fe2. После процедуры охлаждения во внешнем магнитном поле +4 кЭ намагниченности M_{Fe1} и M_{Fe2} ферромагнитных слоев Fe1 и Fe2 параллельны друг другу ($\alpha = 0^0$) и направлены вдоль направления внешнего магнитного поля. Намагниченность M_{Fe1} слоя Fe1 зафиксирована антиферромагнитным слоем CoO_x вдоль направления первоначально приложенного магнитного поля. Намагниченность слоя Fe2 свободна и может изменять свое направление при приложении небольшого магнитного поля 0.2 - 0.25 кЭ.

Наиболее интересные результаты удалось получить для образца $\text{CoO}_x/\text{Fe1}(3 \text{ нм})/\text{Cu}(4 \text{ нм})/\text{Fe2}(0.8 \text{ нм})/\text{Cu}(1.2 \text{ нм})/\text{Pb}(60 \text{ нм})$. На Рис. 3 (а) и 3 (б) представлены угловые зависимости разности между $T_c(\alpha^{cor})$ и $T_c(0^0)$, исследованные в магнитном поле H = +0.5 кЭ и H = +1 кЭ, соответственно. Из Рис. 3 (а) и (б) видно, что наблюдается характерный минимум в T_c вблизи ортогональной ориентации намагниченностей ферромагнитных слоев, что, согласно теории Фоминова и др. [14], свидетельствует о проявлении ДТК в сверхпроводящем конденсате в этих системах.

На Рис. 3 сплошные линии $W(0^0) - W(\alpha^{cor})$ — теоретические кривые, рассчитанные согласно теории Фоминова и др. [14].² Для расчета W использовались микроскопические параметры, которые были получены в Главе 2. Как уже упоминалось во Введении, параметр W несет в себе всю информацию о ферромагнетиках (толщина, длина когерентности и т.д.). Аналогом $T_c(\alpha^{cor})$ является параметр $W(\alpha^{cor})$. Как видно из Рис. 3, теоретический анализ показал хорошее качественное согласование теории и эксперимента.

² Здесь α^{cor} — это реальный угол между намагниченностями M_{Fe1} и M_{Fe2} , учитывающий также небольшой поворот намагниченности слоя Fe1 под действием внешнего магнитного поля.

Рис. 3. Угловые зависимости $T_c(\alpha^{cor}) - T_c(0^0)$ при магнитных полях H = +0.5 кЭ (а) и H = +1 кЭ (б). Сплошные линии $W(0^0) - W(\alpha^{cor})$ — теоретические кривые, рассчитанные согласно теории Фоминова и др. [14]. Здесь γ_b — это параметр прозрачности границы Fe/Pb.

В данной главе было качественно показано, что величина триплетного эффекта в образцах $CoO_x/Fe1/Cu/Fe2/Cu/Pb$ с дополнительным слоем меди больше, чем у образцов $CoO_x/Fe1/Cu/Fe2/Pb$. Увеличение этого эффекта связано с тем, что введение дополнительного слоя меди в границу раздела Fe2/Pb не только стабилизирует сверхпроводящие свойства, но и улучшает прозрачность границы раздела Fe2/Pb.

Для того, чтобы убедиться, что полученные нами результаты не являлись систематической ошибкой в позиционировании образца, нами был изучен опорный образец Cu(14 нм)/Pb(60 нм), в котором вся магнитная часть заменена на слой меди. Замена магнитной части на слой меди продемонстрировала отсутствие минимума в температуре перехода в сверхпроводящее состояние на зависимости T_c от α . Изменения величины T_c не выходили за пределы экспериментальной ошибки, которая связана с шириной сверхпроводящих переходов. Это свидетельствует о том, что полученные нами результаты по исследованию ДТК сверхпроводящего конденсата соответствуют действительности.

В заключении главы был проведен теоретический анализ полученных экспериментальных результатов, который показал хорошее качественное согласие теории и эксперимента. Был проведен теоретический расчет реального значения угла (α^{cor}) между намагниченностями M_{Fe1} и M_{Fe2} ферромагнитных слоев Fe1 и Fe2. Разница между углом (α), измеренным во время эксперимента, и теоретически рассчитанным углом (α^{cor}) составила порядка 10⁰. Эта разница связана с тем, что антиферромагнитный слой CoO_x не жестко фиксирует намагниченность слоя железа Fe1 вследствие того, что поле отрыва намагниченности слоя Fe1 от направления поля анизотропии АФ-слоя сравнимо с приложенным внешним полем. Поэтому при вращении образца в плоскости внешнего магнитного поля обе намагниченности слоев Fe1 и Fe2 вращаются вместе с образцом, правда, в различной степени. Этот эффект уже учтен на Рис. 3.

В Главе 4 представлены результаты исследования эффекта сверхпроводящего спинового клапана и триплетной сверхпроводимости для структур CoO_x/Py1/Cu/Py2/Cu/Pb.

В начале главы была установлена важнейшая роль морфологии сверхпроводящего слоя в работе сверхпроводящего спинового клапана. Мы детально исследовали влияние условий приготовления образцов и их дизайна на морфологию. Для этого был использован просвечивающий электронный микроскоп FEI TEM/STEM Technai F30 при ускоряющем напряжении 30 кВ. Прозрачные для электронов поперечные срезы были приготовлены с помощью сфокусированного ионного пучка в установке Zeiss 1540XB. Рентгеновская дисперсионная спектроскопия подтвердила присутствие тонкого слоя пермаллоя. Просвечивающая электронная микроскопия показала, что в структуре MgO/Py/Pb, приготовленной при температуре подложки 300 К, слой свинца растет в виде перекрывающихся островков с размерами 0.2 - 1 мкм. Что же касается структуры MgO/Py/Cu/Pb, напыленной при температуре подложки 150 К, то изображение, полученное с помощью просвечивающей электронной микроскопии, свидетельствует о гладкой поверхности слоя свинца и границ раздела Py/Cu/Pb. Толщина сверхпроводящего слоя была оценена как $d_{Pb} = 70$ нм. Слабый контраст между изображениями слоев Си и Ру не позволил оценить их толщину по отдельности. Общая толщина слоев Ру/Си составляет 8.6 ± 0.1 нм, что находится в согласии с номинальными толщинами слоев Ру и Сu, $d_{Pb} = 5$ нм и $d_{Cu} = 2$ нм.

Сравнительный анализ магнитных и сверхпроводящих свойств серий образцов с шероховатым сверхпроводящим слоем и гладким показал, что качество интерфейса (С/Ф) не является критическим для эффекта близости С/Ф, если говорить о подавлении критической температуры сверхпроводящего слоя. Исследование же величины эффекта сверхпроводящего спинового клапана для этих серий образцов показало, что ΔT_c для образцов с гладким сверхпроводящим слоем составляет порядка 100 мK, а для серии с шероховатым слоем составляет менее 10 мK (см. Рис. 4).

Для образцов CoO_x/Py1/Cu/Py2/Cu/Pb с гладким сверхпроводящим слоем экспериментально изучено сверхпроводящее триплетное спаривание, индуцированное эффектом близости C/Ф. Была исследована зависимость *T_c* от угла *α* между намагниченностями

 $AP-(\circ)$ P-(●) Рис. 4. Сверхпроводящие переходы, измеренные при И намагниченностей ферромагнитных ориентациях для образцов слоев, CoO_x/Py1(3 нм)/Cu(4 нм)/Py2(1 нм)/Cu(2 нм)/Pb(70 нм) с шероховатым (а) и гладким (б) сверхпроводящим слоем.

ферромагнитных слоев Ру1 и Ру2 в поле $H_0 = +0.1$ кЭ, приложенном в плоскости образца. Наиболее интересные результаты по зависимости $T_c(\alpha)$ удалось получить для образцов $CoO_x/Py1(3 \text{ нм})/Cu(4 \text{ нм})/Py2(0.6 \text{ нм})/Cu(2 \text{ нм})/Pb(70 \text{ нм})$ и $CoO_x/Py1(3 \text{ нм})/Cu(4 \text{ нм})/Py2(3 \text{ нм})/Cu(2 \text{ нм})/Pb(70 \text{ нм})$ (см. Рис. 5).

Как можно заметить из Рис. 5, при изменении взаимной ориентации намагниченностей от параллельной Р ($\alpha = 0^0$) к АР ($\alpha = 180^0$) T_c изменяется немонотонно, проходя через минимум при неколлинеарной конфигурации. Согласно теории Фоминова и др. [14], характерный минимум в зависимости $T_c(\alpha)$, который наиболее ярко проявляется вблизи $\alpha = 90^0$, однозначно свидетельствует о генерации дальнодействующей триплетной компоненты в сверхпроводящем конденсате. Если предположить, что триплетной компоненты нет (хотя, согласно теории, их возникновение неизбежно), можно ожидать, что зависимость $T_c(\alpha)$ будет монотонной. Исходя из общих соображений, T_c должна быть функцией α^2 и $\pi - \alpha^2$ при изменении угла от 0^0 до 180^0 . Таким образом, зависимость $T_c(\alpha)$ можно выразить через T_c^P и T_c^{AP} следующим образом:

$$T_c^{ref}(\alpha) = T_c^P \cos^2(\alpha/2) + T_c^{AP} \sin^2(\alpha/2).$$
⁽²⁾

Эта воображаемая кривая представлена штриховой линией на Рис. 5 на зависимостях $T_c(\alpha)$. Назовем эту кривую реперной. Отклонение фактического значения T_c от этой реперной кривой показано на Рис. 5 на зависимостях $\Delta T_c^{trip}(\alpha)$. Величина этого отклонения демонстрирует вклад ДТК в величину эффекта спинового клапана. Обозначим ее как ΔT_c^{trip} и получаем, что различие в T_c между антипараллельной и перпендикулярной ори-

Рис. зависимости переходов 5.Температурные сверхпроводящих OT угла между намагниченностями ферромагнитных слоев для образцов $CoO_x/Pv1(3)$ нм)/Cu(4 нм)/Ру2(0.6 нм)/Cu(2 нм)/Pb(70 HM) (a) И $CoO_x/Py1(3 \text{ нм})/Cu(4 \text{ нм})/Py2(3 \text{ нм})/Cu(2 \text{ нм})/Pb(70 \text{ нм})$ (б). Верхние графики угловые зависимости T_c , измеренные во внешнем магнитном поле $H_0 = +0.1$ к Θ (•); реперные кривые показаны штриховой линией; теоретические кривые, рассчитанные согласно теории Фоминова и др. (см. [14]) показаны сплошной линией. Нижние графики угловые зависимости ΔT_c^{trip} — разница между фактическим значением T_c и реперной кривой для образцов.

ентациями составляет уже 130 мК для образца CoO_x/Py1(3 нм)/Cu(4 нм)/Py2(0.6 нм)/ Cu(2 нм)/Pb(70 нм) и 60 мК для образца CoO_x/Py1(3 нм)/Cu(4 нм)/Py2(3 нм)/Cu(2 нм)/ Pb(70 нм). Это означает, что ДТК дает заметный вклад в эффект спинового клапана.

В образце CoO_x/Py1(3 нм)/Cu(4 нм)/Py2(0.6 нм)/Cu(2 нм)/Pb(70 нм) величина эффекта спинового клапана ΔT_c при изменении взаимной ориентации намагниченностей от AP к ортогональной ориентации превышает ширину сверхпроводящего перехода. В связи с этим в такой структуре возникает возможность полного включения и выключения сверхпроводящего тока, как показано на Puc. 6 (а). Полное включение/выключение сопротивления образца, благодаря сочетанию стандартного и триплетного эффекта спинового клапана, продемонстрировано на Puc. 6 (б). Температурная зависимость $\Delta R = R(\alpha = 90^{0}) - R(\alpha = 180^{0})$ показывает, что в перпендикулярной конфигурации намагниченностей в температурном интервале 3.6 — 3.66 К наблюдается полное переключение по отношению к антипараллельной конфигурации. Таким образом, нам удалось показать, что переключение между нормальным и сверхпроводящим состояниями удается достигнуть при переключении между АР и перпендикулярной конфигурации намагниченностей.

Рис. 6. (а) Переключение между нормальным и сверхпроводящим состояниями для образца $\text{CoO}_x/\text{Py1}(3 \text{ нм})/\text{Cu}(4 \text{ нм})/\text{Py2}(0.6 \text{ нм})/\text{Cu}(2 \text{ нм})/\text{Pb}(70 \text{ нм})$ путем медленного понижения температуры в пределах ΔT_c и резкого изменения направления магнитного поля α между 180⁰ (•) и 90⁰ (•). (б) Температурная зависимость $\Delta R = R(\alpha = 90^{\circ}) - R(\alpha = 180^{\circ})$, демонстрирующая полное переключение сверхпроводящего тока в температурном интервале 3.6 – 3.66 К.

Для того, чтобы наблюдать в чистом виде триплетный вклад в эффект сверхпроводящего спинового клапана, был использован осциллирующий знакопеременный характер величины обычного эффекта (переключение намагниченностей от AP к P конфигурации) спинового клапана ΔT_c от толщины слоя Py2 d_{Py2} . Для образца с толщиной пермаллоя, при которой ΔT_c , вызванная обычным эффектом спинового клапана, зануляется, наблюдался «чистый» триплетный вклад в эффект спинового клапана, угловая зависимость которого представляет собой симметричную кривую с минимумом вблизи ортогональной конфигурации намагниченностей ферромагнитных слоев Py1 и Py2 (см. Puc. 7).

В заключении главы было впервые проведено прямое сравнение экспериментальных данных с теоретическим расчетом T_c в рамках теории Фоминова и др. для структур $\Phi 1/\Phi 2/C$. Во всех предыдущих работах нашей группы экспериментальные данные по T_c сравнивались с параметром теории W (см. Выражение (1)), который определяет степень подавления сверхпроводимости ферромагнитным слоем [14]. Это рассмотрение позволило продемонстрировать качественное согласие теории (параметра W) и эксперимента (T_c) без

Рис. 7. Образец CoO_x/Py1(3 нм)/Cu(4 нм)/Py2(1.7 нм)/Cu(2 нм)/Pb(70 нм) с нулевым стандартным эффектом спинового клапана ($\Delta T_c^{P} = \Delta T_c^{AP}$). Угловая зависимость $T_c(\alpha)$, вызванная дальнодействующей триплетной компонентой сверхпроводящего конденсата, показана кружками. Сплошная линия — теоретическая кривая.

вычисления самой критической температуры. Здесь же проведен прямой сравнительный анализ теоретически рассчитанного и экспериментально измеренного значения T_c . Для теоретического расчета $T_c(\alpha)$ была использована теория Фоминова и др. (см. [14]) на случай произвольной прозрачности границы $\Phi 2/C$. Данный расчет представлен сплошной линией на Рис. 5 и Рис. 7. Как видно из Рис. 5 и Рис. 7, теория воспроизводит основные черты экспериментальных зависимостей. Заметное расхождение теории и эксперимента может быть обусловлено двумя причинами. В теории Фоминова и др. [14] в качестве Φ -слоев рассматривался слабый ферромагнетик, а пермаллой не является таковым. Кроме того, мы не учитывали ограничение прозрачности границы раздела Py1/Cu/Py2, как это делалось в теоретических работах [22, 23], поскольку для нас этот параметр явился бы свободным. В отличие от параметров, характеризующих прозрачность границы раздела Py2/Pb, мы не можем оценить эту величину из эксперимента.

В Заключении представлены основные результаты и выводы работы. В настоящей работе проведено детальное исследование эффекта сверхпроводящего спинового клапана и триплетной сверхпроводимости в образцах CoO_x/Fe1/Cu/Fe2/Cu/Pb и CoO_x/Py1/Cu/Py2/Cu/Pb. Основные результаты можно сформулировать следующим образом:

- Установлено, что дополнительный слой меди в границе раздела Fe2/Pb в структуре CoO_x/Fe1/Cu/Fe2/Cu/Pb позволяет стабилизировать сверхпроводящие свойства образцов и увеличить прозрачность границы Fe2/Pb;
- 2. Проведены исследования особенностей поведения величины эффекта сверхпроводящего спинового клапана $\Delta T_c = T_c^{AP} - T_c^P$ при изменении толщины слоев Fe1 и Fe2 для

образцов $CoO_x/Fe1/Cu/Fe2/Cu/Pb$ со стабильными сверхпроводящими свойствами. При этом было обнаружено проявление дальнодействующих триплетных компонент сверхпроводимости в образцах спинового клапана $CoO_x/Fe1/Cu/Fe2/Cu/Pb$;

- 3. Показано, что замена ферромагнитного материала в системе ${\rm CoO}_x/\Phi 1/{\rm Cu}/\Phi 2/{\rm Cu}/{\rm Pb}$ с железа на пермаллой позволяет увеличить величину эффекта сверхпроводящего спинового клапана в 3 раза. Установлена важная роль морфологии сверхпроводящего слоя на величину эффекта сверхпроводящего спинового клапана. Исследования показывают, что использование гладкого сверхпроводящего слоя вместо шероховатого позволяет увеличить величину ΔT_c с 10 мK до 100 мK;
- 4. Проведены исследования дальнодействующей триплетной компоненты в образцах сверхпроводящего спинового клапана CoO_x/Py1/Cu/Py2/Cu/Pb. Показана возможность полного переключения между сверхпроводящим и нормальным состояниями, которое вызвано сочетанием стандартного и триплетного эффектов спинового клапана при изменении взаимной ориентации намагниченностей слоев Py1 и Py2 от антипараллельной к перпендикулярной ориентации, в отличие от стандартного эффекта, который наблюдается при переключении взаимной ориентации намагниченностей от AP к P ориентации;
- 5. Впервые удалось наблюдать «изолированный» триплетный вклад в эффект спинового клапана для образца $CoO_x/Py1/Cu/Py2/Cu/Pb$ с толщиной слоя Py2, при которой ΔT_c , вызванная обычным эффектом спинового клапана, зануляется вследствие осцилляционного знакопеременного поведения величины эффекта ΔT_c от толщины слоя Py2 d_{Py2} ;
- Впервые показано, что теория Фоминова и др. для структур Ф1/Ф2/С правильно описывает экспериментальные результаты.

Цитированная литература

- 1. Oh, S. A superconductive magnetoresistive memory element using controlled exchange interaction / S. Oh, D. Youm, M. R. Beasley // Appl. Phys. Lett. -1997. Vol. 71, N^o 16. P. 2376–2378.
- 2. Tagirov, L. R. Low-Field Supercodnucting Spin Switch Based on a Superconductor/Ferromagnet Multilayer / L. R. Tagirov // Phys. Rev. Lett. 1999. Vol. 83, N° 10. P. 2058–2061.
- Buzdin, A. I. Spin-orientation-dependent superconductivity in F/S/F structures / A. I. Buzdin, A. V. Vedyayev, N. V. Ryzhanova // Europhys. Lett. — 1999. — Vol. 48, № 48. — P. 686–691.
- 4. Magnetization-Orientation Dependence of the Superconducting Transition Temperature in the Ferromagnet-Superconductor-Ferromagnet System: CuNi/Nb/CuNi / J. Gu, C.-Y. You, J. S. Jiang et al. // Phys. Rev. Lett. − 2002. − Vol. 89, № 26. − P. 1–4.
- Potenza, A. Superconductor-ferromagnet CuNi/Nb/CuNi trilayers as superconducting spin-valve core structures / A. Potenza, C. Marrows // Phys. Rev. B. - 2005. - Vol. 71, № 18. - P. 25-28.
- 6. Moraru, I. C. Observation of standard spin-switch effects in ferromagnet/superconductor/ferromagnet trilayers with a strong ferromagnet / I. C. Moraru, W. P. Pratt, N. O. Birge // Phys. Rev. B. 2006. Vol. 74. P. 220507(1-4).
- Rusanov, A. Y. Inverse spin switch effects in ferromagnet-superconductor-ferromagnet trilayers with strong ferromagnets / A. Y. Rusanov, S. Habraken, J. Aarts // Phys. Rev. B. 2006. Vol. 73, № 060505(R). P. 1-4.
- Miao, G.-X. Infinite Magnetoresistance from the Spin Dependent Proximity Effect in Symmetry Driven bcc-Fe/V/Fe Heteroepitaxial Superconducting Spin Valves / G.-X. Miao, A. V. Ramos, J. Moodera // Phys. Rev. Lett. 2008. Vol. 101, № 137001. P. 1-4.
- Origin of the Inverse Spin Switch Effect in Superconducting Spin Valves / J. Zhu, X. Cheng, C. Boone, I. N. Krivorotov // Phys. Rev. Lett. – 2009. – Vol. 103, № 027004. – P. 1–4.
- 10. Superconducting Spin Valve Effect of a V Layer Coupled to an Antiferromagnetic [Fe/V] Superlattice / K. Westerholt, D. Sprungmann, H. Zabel et al. // Phys. Rev. Lett. 2005. Vol. 95. P. 097003.
- Superconducting spin valves based on epitaxial Fe/V superlattices / G. Nowak, H. Zabel, K. Westerholt et al. // Phys. Rev. B. - 2008. - Vol. 78, № 13. - P. 134520.
- 12. Full spin switch effect for the superconducting current in a superconductor/ferromagnet thin film heterostructure / P. V. Leksin, N. N. Garif'yanov, I. A. Garifullin et al. // Applied Physics Letters. 2010. Vol. 97, № 10. P. 102505.
- Manifestation of New Interference Effects in a Superconductor-Ferromagnet Spin Valve / P. Leksin, N. Garif'yanov, I. Garifullin et al. // Phys. Rev. Lett. - 2011. - Vol. 106, № 6. - P. 1-4.
- 14. Superconducting Triplet Spin Valve / Y. V. Fominov, A. A. Golubov, T. Y. Karminskaya et al. // JETP Letters. 2010. Vol. 91, № 6. P. 308–313.
- Bergeret, F. S. Long-Range Proximity Effects in Superconductor-Ferromagnet Structures / F. S. Bergeret, A. F. Volkov, K. B. Efetov // Phys. Rev. Lett. 2001. Vol. 86, № 18. P. 4096-4099.
- Volkov, F. Odd Triplet Superconductivity in Superconductor-Ferromagnet Multilayered Structures / F. Volkov, F. Bergeret, K. Efetov // Phys. Rev. Lett. - 2003. - Vol. 90, № 11. - P. 1-4.
- Buzdin, A. I. Domain walls and long-range triplet correlations in sfs josephson junctions / A. I. Buzdin, A. S. Mel'nikov, N. G. Pugach // Phys. Rev. B. - 2011. - Apr. - Vol. 83. -P. 144515.

- 18. Superconductor-insulator-ferromagnet-superconductor josephson junction: From the dirty to the clean limit / N. G. Pugach, M. Y. Kupriyanov, E. Goldobin et al. // Phys. Rev. B. 2011. Oct. Vol. 84. P. 144513.
- Interference phenomena and long-range proximity effect in clean superconductor-ferromagnet systems / A. S. Mel'nikov, A. V. Samokhvalov, S. M. Kuznetsova, A. I. Buzdin // Phys. Rev. Lett. - 2012. - Dec. - Vol. 109. - P. 237006.
- 20. Physical properties of the superconducting spin-valve Fe/Cu/Fe/In heterostructure / P. V. Leksin, N. N. Garif'yanov, I. A. Garifullin et al. // Phys. Rev. B. 2012. Vol. 85. P. 024502.
- 21. Evidence for triplet superconductivity in a superconductor-ferromagnet spin valve / P. V. Leksin, N. N. Garif'yanov, I. A. Garifullin et al. // Phys. Rev. Lett. - 2012. -Vol. 109. - P. 057005.
- 22. Proximity effects in superconducting triplet spin-valve F2/F1/S / R. Deminov, L. Tagirov, R. Gaifullin et al. // Journal of Magnetism and Magnetic Materials. -2015. Vol. 373. P. 16–17.
- 23. Role of interface transparency and exchange field in the superconducting triplet spin-valve effect / R. Deminov, L. Tagirov, R. Gaifullin et al. // Solid State Phenomena. 2015. Vol. 233–234. P. 745–749.

Список публикаций автора по теме диссертации

I. Статьи в научных журналах, рекомендованных ВАК

- А1. Сверхпроводящий спиновый клапан и триплетная сверхпроводимость / И. А. Гарифуллин, Н. Н. Гарифьянов, П. В. Лексин, А. А. Камашев, Я. В. Фоминов, J. Schumann, В. Катаев, Büchner // Известия РАН. Серия физическая. 2014. Т. 78, № 12. С. 1628–1635.
- A2. The peculiarities of the operation of the superconducting spin valve / I. A. Garifullin, N. N. Garif'yanov, P. V. Leksin, A. A. Kamashev, Ya. V. Fominov, J. Schumann, V. Kataev, B. Büchner // Magnetic Resonance in Solids. Electronic Journal. 2014. Vol. 16, № 14208. P. 1–14.
- A3. The superconducting spin valve and triplet superconductivity / I. A. Garifullin, P. V. Leksin, N. N. Garif'yanov, A. A. Kamashev, Ya. V. Fominov, J. Schumann, Y Krupskaya, V. Kataev, O. G. Schmidt, B. Büchner // Journal of Magnetism and Magnetic Materials. — 2015. — Vol. 373. — P. 18–22.
- A4. Peculiarities of performance of the spin valve for the superconducting current / P. V. Leksin, A. A. Kamashev, N. N. Garif'yanov и др. // Письма в ЖЭТФ. — 2013. — Т. 97, № 8. — С. 478–482.
- A5. Superconducting spin-valve effect and triplet superconductivity in $CoO_x/Fe1/Cu/Fe2/Cu/Pb$ multilayer / P. V. Leksin, N. N. Garif'yanov, A. A. Kamashev et al. // Physical Review B. -2015. -Vol. 91. -P. 214508.
- A6. Boosting the superconducting spin valve effect in a metallic superconductor/ferromagnet heterostructure / P. V. Leksin, A. A. Kamashev, J. Schumann et al. // Nano Research. - 2016. - Vol. 9. - P. 1005-1011.
- A7. Isolation of proximity-induced triplet pairing channel in a superconductor / ferromagnet spin valve / P. V. Leksin, N. N. Garif'yanov, A. A. Kamashev et al. // Physical Review B. 2016. Vol. 93. P. 100502(R).
- А8. Экспериментальное исследование роли триплетного спаривания в эффекте сверхпроводящего спинового клапана / П. В. Лексин, А. А. Камашев, Н. Н. Гарифьянов и др. // Физика твердого тела. 2016. Т. 58, № 11. С. 2094–2103.

II. Тезисы докладов и труды научных конференций, на которых автор выступал с устным докладом

- A9. Effect of superconducting spin valve and triplet superconductivity in Fe1/Cu/Fe2/Cu/Pb heterostructures / A.A. Kamashev, P.V. Leksin, N.N. Garif'yanov, I.A. Garifullin, Ya.V. Fominov, J. Schumann, C. Hess, V. Kataev, B. Büchner // XVII International Youth Sciencific School «Actual Problems of Magnetic Resonance and Itis Application»: Abstracts of Inter. Conf., Kazan, Russia, 22-27 June 2014. —Kazan: Kazan University. 2014. P. 127–130.
- A10. Triplet superconductivity in the CoOx/Fe1/Cu/Fe2/Cu/Pb spin valve system /
 A. A. Kamashev, N.N. Garif'yanov, I.A. Garifullin, Ya.V. Fominov, P.V. Leksin, J. Schumann, C. Hess, V. Kataev, B. Büchner // The International Conference Spin Physics, Spin Chemistry and Spin Technology: Abstracts of Inter. Conf., St. Petersburg, Russia, June 1th-5st. —St. Petersburg: Ioffe Institute. 2015. P. 87.
- А11. Эффект спинового клапана и триплетная сверхпроводимость в тонкопленочной гетероструктуре на основе свинца и пермаллоя / А. А. Камашев, П. В. Лексин, Н. Н. Гарифьянов, Я. В. Фоминов, Ј. Schumann, В. Катаев, В. Büchner, И. А. Гарифуллин // XXXVII Совещание по физике низких температур: Программа и тезисы докладов, Казань, Россия, 29 июня-3 июля 2015. —Казань: Казанский Федеральный Университет. – 2015. – Р. 292-293.
- A12. Experimental study of the role of the triplet pairing in the superconducting spin valve effect / A. A. Kamashev // Superconductors-based sensors and quantum technologies Workshop 2016: Abstracts of Inter. Conf., Moscow, Russia, 18th-21st April 2016 — Адрес доступа: http://physics.mpgu.edu/workshop2016/ files/speaks/Andrey_Kamashev.pdf. - 2016.